Post Buy Requirement
AE

ajantha electronics components shop in chennai

Add Review

Capacitor

Our product range contains a wide range of Capacitor, Electrolytic Capacitor, Tantalum Capacitors, AC X2 CAPACITORS and box capacitor

Capacitor

A capacitor (originally known as a condenser) is a passive two-terminal electrical component used to store energy electrostatically in an electric field. The forms of practical capacitors vary widely, but all contain at least two electrical conductors (plates) separated by a dielectric (i.e., insulator). The conductors can be thin films of metal, aluminum foil or disks, etc. The 'nonconducting' dielectric acts to increase the capacitor's charge capacity. A dielectric can be glass, ceramic, plastic film, air, paper, mica, etc. Capacitors are widely used as parts of electrical circuits in many common electrical devices. Unlike a resistor, a capacitor does not dissipate energy. Instead, a capacitor stores energy in the form of an electrostatic field between its plates.

When there is a potential difference across the conductors (e.g., when a capacitor is attached across a battery), an electric field develops across the dielectric, causing positive charge (+Q) to collect on one plate and negative charge (-Q) to collect on the other plate. If a battery has been attached to a capacitor for a sufficient amount of time, no current can flow through the capacitor. However, if an accelerating or alternating voltage is applied across the leads of the capacitor, a displacement current can flow.

An ideal capacitor is characterized by a single constant value for its capacitance. Capacitance is expressed as the ratio of the electric charge (Q) on each conductor to the potential difference (V) between them. The SI unit of capacitance is the farad (F), which is equal to one coulomb per volt (1 C/V). Typical capacitance values range from about 1 pF (10-12 F) to about 1 mF (10-3 F).

The capacitance is greater when there is a narrower separation between conductors and when the conductors have a larger surface area. In practice, the dielectric between the plates passes a small amount of leakage current and also has an electric field strength limit, known as the breakdown voltage. The conductors and leads introduce an undesired inductance and resistance.

Capacitors are widely used in electronic circuits for blocking direct current while allowing alternating current to pass. In analog filter networks, they smooth the output of power supplies. In resonant circuits they tune radios to particular frequencies. In electric power transmission systems they stabilize voltage and power flow.

View Complete Details

Electrolytic Capacitor

An electrolytic capacitor is a capacitor that uses an electrolyte (an ionic conducting liquid) as one of its plates to achieve a larger capacitance per unit volume than other types, but with performance disadvantages. All capacitors conduct alternating current (AC) and block direct current (DC) and can be used, amongst other applications, to couple circuit blocks allowing AC signals to be transferred while blocking DC power, to store energy, and to filter signals according to their frequency. Most electrolytic capacitors are polarized; hence, they can only be operated with a lower voltage on the terminal marked "-" without damaging the capacitor. This generally limits electrolytic capacitors to supply-decoupling and bias-decoupling, since signal coupling usually involves both positive and negative voltages across the capacitor. The large capacitance of electrolytic capacitors makes them particularly suitable for passing or bypassing low-frequency signals and storing large amounts of energy. They are widely used in power supplies and for decoupling unwanted AC components from DC power connections.

Supercapacitors provide the highest capacitance of any practically available capacitor, [1] up to thousands of farads, with working voltages of a few volts. Electrolytic capacitors range downwards from tens (exceptionally hundreds) of thousands of microfarads to about 100 nanofaradssmaller sizes are possible but have no advantage over other types. Other types of capacitor are available in sizes typically up to about ten microfarads, but the larger sizes are much larger and more expensive than electrolytics (film capacitors of up to thousands of microfarads are available, but at very high prices[2]). Electrolytic capacitors are available with working voltages up to about 500V, although the highest capacitance values are not available at high voltage. Working temperature is commonly 85C for standard use and 105 for high-temperature use; higher temperature units are available, but uncommon.

Unlike other types of capacitor, most electrolytic capacitors require that the voltage applied to one terminal (the anode) never become negative relative to the other (they are said to be "polarized"), so cannot be used with AC signals without a DC polarizing bias (non-polarized electrolytic capacitors are available for special purposes).

Capacitance tolerance and stability, equivalent series resistance (ESR) and dissipation factor are significantly inferior to other types of capacitors, leakage current is higher and working life is shorter. Capacitors can lose capacitance as they age and lose electrolyte, particularly at high temperatures. A common failure mode which causes difficult-to-find circuit malfunction is progressively increasing ESR without change of capacitance, again particularly at high temperature. Large ripple currents flowing through the ESR generate harmful heat.

Two types of electrolytic capacitor are in common use: aluminum and tantalum. Tantalum capacitors have generally better performance, higher price, and are available only in a more restricted range of parameters. Solid polymer dielectric aluminum electrolytic capacitors have better characteristics than wet-electrolyte typesin particular lower and more stable ESR and longer lifeat higher prices and more restricted values.

View Complete Details

Tantalum Capacitors

TANTALUM CAPACITO

A tantalum capacitor is a type of electrolytic capacitor, a component of electronic circuits. It typically consists of a pellet of tantalum metal as anode, covered by an insulating oxide layer that forms the dielectric, surrounded by conductive material as a cathode. Tantalum capacitors are the main use of the element tantalum.
The tantalum capacitor distinguishes itself from other capacitors in having high capacitance per volume and weight. Tantalum capacitors have lower equivalent series resistance (ESR), lower leakage, and higher operating temperature than other electrolytic capacitors, although other types of capacitors are even better in these regards.
Tantalum capacitors are considerably more expensive than any other commonly used type of capacitor, so they are used only in applications where the small size or better performance are important.

View Complete Details

AC X2 CAPACITORS

Tecate group offers a family of AC Safety Capacitors for X and Y class applications which require across the line and line to ground protection. This product is UL recognized and IEC 60384-1 compliant, and available in SMD and radial through hole packages. These capacitors are ideal for providing surge and transient protection to sensitive electronic circuitry, as well as the users. These devices are also commonly used to filter EMI in power supply applications.

View Complete Details

Box Capacitor

  • SIZE 5 MM

An Arcotronics R82 Series, 5mm radial, 100V miniature metallised polyester capacitor. Ideal for situations where a high packing density is required. Typical applications Include by-passing, decoupling, timing

View Complete Details

Multilayer Capacitor

A ceramic capacitor is a fixed value capacitor in which ceramic material acts as the dielectric. It is constructed of two or more alternating layers of ceramic and a metal layer acting as the electrodes. The composition of the ceramic material defines the electrical behavior and therefore applications. Ceramic capacitors are divided into two application classes: Class 1 ceramic capacitors offer high stability and low losses for resonant circuit applications. Class 2 ceramic capacitors offer high volumetric efficiency for buffer, by-pass and coupling applications. Ceramic capacitors, especially the multilayer style (MLCC), are the most produced and used capacitors in electronic equipment that incorporate approximately one trillion pieces (1000 billion pieces) per year.[1] Ceramic capacitors of special shapes and styles are used as capacitors for RFI/EMI suppression, as feed-through capacitors and in larger dimensions as power capacitors for transmitters.

View Complete Details
Tell Us What are you looking for? Will call you back

Contact Us

Retailer of Capacitor from Chennai, Tamil Nadu by ajantha electronics components shop in chennai
Post Buy Requirement

Capacitor

Our Complete range of products are Capacitor, Electrolytic Capacitor, Tantalum Capacitors, AC X2 CAPACITORS and box capacitor.

Capacitor

A capacitor (originally known as a condenser) is a passive two-terminal electrical component used to store energy electrostatically in an electric field. The forms of practical capacitors vary widely, but all contain at least two electrical conductors (plates) separated by a dielectric (i.e., insulator). The conductors can be thin films of metal, aluminum foil or disks, etc. The 'nonconducting' dielectric acts to increase the capacitor's charge capacity. A dielectric can be glass, ceramic, plastic film, air, paper, mica, etc. Capacitors are widely used as parts of electrical circuits in many common electrical devices. Unlike a resistor, a capacitor does not dissipate energy. Instead, a capacitor stores energy in the form of an electrostatic field between its plates.

When there is a potential difference across the conductors (e.g., when a capacitor is attached across a battery), an electric field develops across the dielectric, causing positive charge (+Q) to collect on one plate and negative charge (-Q) to collect on the other plate. If a battery has been attached to a capacitor for a sufficient amount of time, no current can flow through the capacitor. However, if an accelerating or alternating voltage is applied across the leads of the capacitor, a displacement current can flow.

An ideal capacitor is characterized by a single constant value for its capacitance. Capacitance is expressed as the ratio of the electric charge (Q) on each conductor to the potential difference (V) between them. The SI unit of capacitance is the farad (F), which is equal to one coulomb per volt (1 C/V). Typical capacitance values range from about 1 pF (10-12 F) to about 1 mF (10-3 F).

The capacitance is greater when there is a narrower separation between conductors and when the conductors have a larger surface area. In practice, the dielectric between the plates passes a small amount of leakage current and also has an electric field strength limit, known as the breakdown voltage. The conductors and leads introduce an undesired inductance and resistance.

Capacitors are widely used in electronic circuits for blocking direct current while allowing alternating current to pass. In analog filter networks, they smooth the output of power supplies. In resonant circuits they tune radios to particular frequencies. In electric power transmission systems they stabilize voltage and power flow.

View Complete Details

Electrolytic Capacitor

An electrolytic capacitor is a capacitor that uses an electrolyte (an ionic conducting liquid) as one of its plates to achieve a larger capacitance per unit volume than other types, but with performance disadvantages. All capacitors conduct alternating current (AC) and block direct current (DC) and can be used, amongst other applications, to couple circuit blocks allowing AC signals to be transferred while blocking DC power, to store energy, and to filter signals according to their frequency. Most electrolytic capacitors are polarized; hence, they can only be operated with a lower voltage on the terminal marked "-" without damaging the capacitor. This generally limits electrolytic capacitors to supply-decoupling and bias-decoupling, since signal coupling usually involves both positive and negative voltages across the capacitor. The large capacitance of electrolytic capacitors makes them particularly suitable for passing or bypassing low-frequency signals and storing large amounts of energy. They are widely used in power supplies and for decoupling unwanted AC components from DC power connections.

Supercapacitors provide the highest capacitance of any practically available capacitor, [1] up to thousands of farads, with working voltages of a few volts. Electrolytic capacitors range downwards from tens (exceptionally hundreds) of thousands of microfarads to about 100 nanofaradssmaller sizes are possible but have no advantage over other types. Other types of capacitor are available in sizes typically up to about ten microfarads, but the larger sizes are much larger and more expensive than electrolytics (film capacitors of up to thousands of microfarads are available, but at very high prices[2]). Electrolytic capacitors are available with working voltages up to about 500V, although the highest capacitance values are not available at high voltage. Working temperature is commonly 85C for standard use and 105 for high-temperature use; higher temperature units are available, but uncommon.

Unlike other types of capacitor, most electrolytic capacitors require that the voltage applied to one terminal (the anode) never become negative relative to the other (they are said to be "polarized"), so cannot be used with AC signals without a DC polarizing bias (non-polarized electrolytic capacitors are available for special purposes).

Capacitance tolerance and stability, equivalent series resistance (ESR) and dissipation factor are significantly inferior to other types of capacitors, leakage current is higher and working life is shorter. Capacitors can lose capacitance as they age and lose electrolyte, particularly at high temperatures. A common failure mode which causes difficult-to-find circuit malfunction is progressively increasing ESR without change of capacitance, again particularly at high temperature. Large ripple currents flowing through the ESR generate harmful heat.

Two types of electrolytic capacitor are in common use: aluminum and tantalum. Tantalum capacitors have generally better performance, higher price, and are available only in a more restricted range of parameters. Solid polymer dielectric aluminum electrolytic capacitors have better characteristics than wet-electrolyte typesin particular lower and more stable ESR and longer lifeat higher prices and more restricted values.

View Complete Details

Tantalum Capacitors

TANTALUM CAPACITO

A tantalum capacitor is a type of electrolytic capacitor, a component of electronic circuits. It typically consists of a pellet of tantalum metal as anode, covered by an insulating oxide layer that forms the dielectric, surrounded by conductive material as a cathode. Tantalum capacitors are the main use of the element tantalum.
The tantalum capacitor distinguishes itself from other capacitors in having high capacitance per volume and weight. Tantalum capacitors have lower equivalent series resistance (ESR), lower leakage, and higher operating temperature than other electrolytic capacitors, although other types of capacitors are even better in these regards.
Tantalum capacitors are considerably more expensive than any other commonly used type of capacitor, so they are used only in applications where the small size or better performance are important.

View Complete Details

AC X2 CAPACITORS

Tecate group offers a family of AC Safety Capacitors for X and Y class applications which require across the line and line to ground protection. This product is UL recognized and IEC 60384-1 compliant, and available in SMD and radial through hole packages. These capacitors are ideal for providing surge and transient protection to sensitive electronic circuitry, as well as the users. These devices are also commonly used to filter EMI in power supply applications.

View Complete Details

Box Capacitor

  • SIZE 5 MM

An Arcotronics R82 Series, 5mm radial, 100V miniature metallised polyester capacitor. Ideal for situations where a high packing density is required. Typical applications Include by-passing, decoupling, timing

View Complete Details

Multilayer Capacitor

A ceramic capacitor is a fixed value capacitor in which ceramic material acts as the dielectric. It is constructed of two or more alternating layers of ceramic and a metal layer acting as the electrodes. The composition of the ceramic material defines the electrical behavior and therefore applications. Ceramic capacitors are divided into two application classes: Class 1 ceramic capacitors offer high stability and low losses for resonant circuit applications. Class 2 ceramic capacitors offer high volumetric efficiency for buffer, by-pass and coupling applications. Ceramic capacitors, especially the multilayer style (MLCC), are the most produced and used capacitors in electronic equipment that incorporate approximately one trillion pieces (1000 billion pieces) per year.[1] Ceramic capacitors of special shapes and styles are used as capacitors for RFI/EMI suppression, as feed-through capacitors and in larger dimensions as power capacitors for transmitters.

View Complete Details
Tell Us What are you looking for? Will call you back

Contact Us